New Acute Care Hospital and Skilled Nursing Facility

San Francisco, CA

Technical Report 3

Tim Ariosto – Structural Option

Faculty Advisor - Dr. Richard Behr December 1^{st} , 2009 3 Page | **1**

Technical Report 3

Ariosto

Executive Summary

The purpose of this report was to complete an in-depth analysis on the lateral system of the New Acute Care Hospital and Skilled Nursing Facility in San Francisco, CA. This was accomplished through a combination of methods including hand calculations, a 2D computer model, and a 3D computer model.

Before this analysis began in earnest, the seismic loads, which were found to be critical in *Technical Report I*, were reevaluated. The revised seismic analysis resulted in loads that, while still appeared to control, were lower than those originally calculated in *Technical Report I*.

This study found that lateral loads are transmitted through the structural primarily through a set of special steel moment frames. Torsional effects were analyzed, and it was found that each frame takes a percentage of load that is a function of both its stiffness, as well as its length. Shorter frames were shown to carry a lower percentage of load, whereas long frames take a greater percentage.

The report also included a study of the lateral loads and the combinations of loads that might control design in the structure. It was found that Wind Case II from ASCE7-05 would be the controlling wind load on the structure. In addition, it was confirmed that seismic loads would be the controlling lateral load. Load combinations including seismic loads were found to control over those without them.

Lastly, several checks were undertaken to insure that drift met industry standards, critical members were appropriately sized, and that overturning would not occur. It was found that while drift was properly controlled and the members were adequately sized, overturning would be an issue.

Table of Contents

Executive Summary	2
Table of Figures	4
Introduction	5
Structure Overview	6
Foundation System	6
Framing System	6
Lateral System	9
Roof System	9
Materials Used	11
Applicable Codes	12
Original Design Codes Used	12
Design Codes Used in Thesis Analysis	12
Design Loads	13
Gravity Loads	13
Lateral Loads	14
Wind Loads	14
Wind Loads Seismic Loads	14 17
Wind Loads Seismic Loads Computer Models	14 17 18
Wind Loads Seismic Loads Computer Models 2D SAP model	14 17 18 18
Wind Loads Seismic Loads Computer Models 2D SAP model 3D ETABs Model	14 17 18 18 19
Wind Loads Seismic Loads Computer Models 2D SAP model 3D ETABs Model Structure Behavior	14 17 18 18 19 25
Wind Loads Seismic Loads Computer Models 2D SAP model 3D ETABs Model Structure Behavior Load Combinations	14 17 18 18 19 25 27
Wind Loads Seismic Loads Computer Models 2D SAP model 3D ETABs Model Structure Behavior Load Combinations	14 17 18 19 25 27 28
Wind Loads Seismic Loads Computer Models 2D SAP model 3D ETABs Model Structure Behavior Load Combinations Drift	14 17 18 19 25 27 28 31
Wind Loads Seismic Loads Computer Models	14 17 18 19 25 27 28 31 32
Wind Loads Seismic Loads	14 17 18 19 25 27 28 31 32 33
Wind Loads Seismic Loads Computer Models 2D SAP model 3D ETABs Model Structure Behavior Load Combinations Drift Spot Checks Conclusions APPENDIX Appendix A: Wind Calculations	14 17 18 19 25 27 28 31 32 33 34
Wind Loads Seismic Loads 2D SAP model 3D ETABs Model Structure Behavior Load Combinations Drift Spot Checks Conclusions APPENDIX Appendix A: Wind Calculations	14 17 18 19 25 27 28 31 32 33 34 39
Wind Loads Seismic Loads Computer Models 2D SAP model 3D ETABs Model Structure Behavior Load Combinations Drift Spot Checks Conclusions APPENDIX Appendix A: Wind Calculations Appendix B: Seismic Calculations Appendix C: Computer Modeling	14 17 18 19 25 27 28 31 32 33 34 39 42

Appendix E: Load Combinations	. 52
Appendix F: Spot Checks	. 53
Appendix G: Plans	. 58

Table of Figures

Figure 1: Site View of New Acute Care Hospital (blue) located adjacent to existing	
Chinese Hospital. Photo Courtesy of Google Maps	5
Figure 2: Exterior view of New Acute Care Hospital and surrounding buildings	5
Figure 3: Typical Framing Plan with columns highlighted	7
Figure 4: Typical Framing Plans with lateral system highlighted in blue	8
Figure 5: Reduced Beam Section	9
Figure 6: Parallel beams used for plumbing1	10
Figure 7: Seismic Loads 1	L7
Figure 8: SAP frames under lateral loading1	19
Figure 9: 3D Lateral System Model 2	20
Figure 10: Center of Rigidity for Basement Level 2	22
Figure 11: Center of Rigidity for Ground Floor-3rd Floor 2	23
Figure 12: Center of Rigidity for Floor 4-Roof 2	<u>2</u> 4
Figure 13: Wind Load Cases from ASCE7-05 Figure 6-9 2	27
Figure 14: ASCE 7-05 Load Combinations 2	28
Figure 15: Drift Values for Wind Loads 2	<u>29</u>
Figure 16: Drifts values for Seismic Loads 3	30
Figure 17: NS Buiding Section 5	58
Figure 18: EW Building Section 5	59
Figure 19: Typical Framing Plan6	50
Figure 20: Typical Moment Frame Elevation6	51

Introduction

The New Acute Care Hospital and Skilled Nursing Facility will serve as an addition to the existing Chinese Hospital located in the historic Chinatown district of San Francisco (See Fig. 1). The site lies on the north flank of Nob Hill, at an elevation of approximately 110' above sea level. Due to the slope of the site, the ground floor of the site is located partially below grade.

This new addition will be connected directly to the existing Chinese Hospital, located at 845 Jackson Street. As part of the construction of this addition, the original portion of the hospital built in 1925

Figure 1: Site View of New Acute Care Hospital (blue) located adjacent to existing Chinese Hospital. Photo Courtesy of Google Maps.

will be demolished. Then the new facility, which has seven stories above ground and one below will be constructed with a hard connection to a previous addition built in 1975. Therefore, the precast concrete panel exterior façade has been designed in a way

that respects the 1975 design while providing a more modern look.

At approximately 92,000 SF, this new facility will provide additional patient rooms as well as well several new medical departments to serve the local community. Construction is expected to begin in 2010 and reach completion by Chinese New Year 2013.

Figure 2: Exterior view of New Acute Care Hospital and surrounding buildings

Structure Overview

The structure of the New Acute Care hospital rests on a mat foundation and consists primarily of composite steel decking with steel framing. A perimeter moment frame system is used to resist lateral loading.

Foundation System

According to the geotechnical report provided by Treadwell & Rollo, the soil conditions on the site can be described as "very stiff to hard sandy clay and clay with gravel," which rests on "intensely fractured, low hardness, weak, deeply weathered shale." Because of this, the New Acute Care Facility has been designed to bear on a 36" mat foundation. Columns rest on concrete pedestals, typically sized at 3'-0" x 3'-0". Since the base of the structure will lie below the water table, the foundation was also designed for hydrostatic uplift.

The close proximity to nearby structures, particularly the 1975 addition to the Chinese Hospital, provided a challenge to the designers. Underpinning was used to maintain the foundations of existing structures on either side of the building (see Figure 2).

Framing System

The New Acute Care Hospital uses steel columns (See Figure 3) to support the buildings gravity loads. These columns range in size from W14x445 near the base of the structure to W8x40's near the roof level. As the columns rise vertically through the structure they are spliced together, usually at a distance of 22'-0". Aside from those used in the lateral system, most of the columns are connected to beams and girders using pinned connections.

Figure 3: Typical Framing Plan with columns highlighted

Figure 4: Typical Framing Plans with lateral system highlighted in blue

Lateral System

Lateral loads are transmitted through the structure primarily through the use of a series of special moment frames. There are 4 special moment frames running east-west, and 2 running north-south. One of the EW frames, located along gridline 2, terminates at the third floor level.

Since brittle failure of connections in moment frames tends to be a problem in regions of high seismic activity, the moment frame beams have been designed using Reduced Beam Sections (RBS). These RBS sections help to insure that yielding occurs in the reduced section of the beam rather than in the connection itself. See Figure 5 below.

In addition to the steel moment frames, the basement walls also serve as shear walls for

the basement level. These walls are constructed are 18" thick and composed of 4ksi concrete.

Roof System

The roof system is supported in a similar manner to the floors below, with a concrete filled metal deck supported by beams and girders. However, beams at this level are typically spaced much closer together, at a distance of approximately 10-12 feet. The sizes of these roof beams generally vary from W10x12's to W24x104's.

Other Features

One of the unique structural features of the New Acute Care Hospital is its connection to the existing Chinese Hospital. The structures are connected with a seismic gap that

allows the two structures to act independently. This size of this gap varies with story height so that a greater amount of movement is allowed at the upper floors.

A second unique feature of the New Acute Care Hospital is a result of the tight floor plan. There are several areas in which partition walls lie directly on beams. Since plumbing would normally be routed through these partition walls, a system of two, parallel beams spaced at 16" were used to create a gap for the plumbing system. See Figure 6 below.

Figure 6: Parallel beams used for plumbing

Materials Used

Location	Weight	Strength f'c (ksi)
Foundation	Normal	4000
Drilled Piers	Normal	4000
Slab-on-Grade Walls, Columns, and Piers	Normal	4000
Fill in Metal Deck and Curbs at Ground Floor	Normal	4500
Fill in Metal Deck at First Floor and Above, Topping Slab, Curbs, and Pads	Light	4000
Fill in Stair Pans	Normal	2500
Fill in Over-Excavated Areas and Conduit Encasement	Normal	1500
Structural Steel		
Туре	Standard	Grade
W-Shapes	ASTM A992	Grade 50
Other Shapes	ASTM A992	Grade 50
Plates for Built-Up Members	ASTM A572	Grade 50
Steel Channels, Angles, Base Plates, Shear Tabs	ASTM A36	Grade 36
Structural Steel Plates	ASTM A572	Grade 50
Steel Bars	ASTM A529	Grade 50
Square or Rectangular Steel Tubes	ASTM A500	Grade B
	ASTM A500	Grade C
Round Steel Tubes		

ASTM A615 Grade 60

Applicable Codes

Original Design Codes Used

In addition to the following codes, the California State Government requires that all new government and hospital buildings are approved by the Office of Statewide Health Planning and Development (OSHPD).

- 2007 California Administration Code
 - o Part 1, Title 24, CCR
- 2001 California Building Code
 - o Part 2, Title 24, CCR
 - o (1997 UBC and 2001 CA Amendments)
- 2004 California Electrical Code
 - o Part 3, Title 24, CCR
 - o (2002 NEC and 2004 CA Amendments)
- 2001 California Fire Code
 - o Part 4, Title 24, CCR
 - o (2000 UMC and 2001 Amendments)

Design Codes Used in Thesis Analysis

- American Society of Civil Engineers (ASCE)
 - o ASCE7-05, Minimum Design Loads for Buildings and Other Structures
- International Building Code, 2006 Edition
- American Institute of Steel Construction (AISC)
 - Steel Construction Manual, Thirteenth Edition (LRFD)
- American Concrete Institute
 - ACI 318-08, Building Code Requirements for Structural Concrete

Design Loads

Gravity Loads

Live Load (psf)		
Live Load	As Designed	Per ASCE 7
Treatment Rooms	80*+20(partitions)	60
Patient Room	80*+20(partitions)	40
Other Rooms (offices)	80*+20(partitions)	50
Storage Areas		
Fixed Racks	125	125
Mobile Racks	250	250
Corridors	100	80
Mechanical Rooms	125	-
Roof (Mech)	125	100
Roof (Other)	20*	20

The designed live loads were found to be larger than the minimum live loads specified by ASCE7-05. It is likely that these values were higher based on the more stringent requirements of OSHPD as well as the experience of the designers.

Floor Dead Loads	
Material	(psf)
6 1/4" Concrete Deck	50
Finishes	1
MEP and Misc.	20
Total	71

Exterior Wall Dead Loads	
Material	(psf)
5" Concrete Panels	50
6" Metals Studs and Wallboard	0.38
6" Batt Insulation	0.9
Total	51.28

Partition Wall Dead Loads (psf)	
Per ASCE7-05 12.7.2	10

Roof Dead Loads	
Material	(psf)
80 Mil. TPO Roof Membrane	5.5
5/8" Dens Deck	2.5
6 1/4" Concrete Deck	60.4
Total	68.4

Dead load values were determined from a combination of sources including but not limited to ASCE7-05, design aids, and manufacturer specifications

According to ASCE7-05 Figure 7-1, the ground snow load for San Francisco CA is 0 lb/ft². Therefore, the structure experiences no snow load.

Lateral Loads

Wind Loads

Wind loads were calculated as prescribed by ASCE7-05 Chapter 6. Although the New Acute Care Facility is an addition to an existing structure, it was modeled as an independent structure for the purpose of this analysis. This simplification was appropriate in that it allows for the possibility of the existing Chinese Hospital structure being demolished at a later date.

Microsoft Excel was used extensively in both the analysis and determination of net wind pressures, story forces, and overturning moments. The net wind pressures comprised of pressure of the windward, leeward, side, and internal area of the building. A detailed summary of the analysis can be found in Appendix A. Once the net wind pressures were determined, the net wind loads were found. Wind loads were the largest in the NS direction resulting in a base shear of 199 kips and an overturning moment of 34,880 ft-kips (See Figure 4).

Wind Loa	ds - NS Dir	ection			
Floor Level	Floor Height (ft)	Elevation (ft)	Story Force (kips)	Total Story Shear (kips)	Overturning Moment (ft-k)
Ground	6.25	0	9.32	199.43	0
1	13	12.5	19.38	190.11	2376.43
2	13.5	26	22.44	170.74	4439.11
3	13.5	39.5	24.55	148.29	5857.46
4	13.5	53	26.09	123.74	6558.12
5	14.25	66.5	28.89	97.65	6493.54
6	15	81.5	31.95	68.76	5603.72
PH	16.75	96.5	36.81	36.81	3551.96
		Total Over	turning Mo	oment (ft-lbs)	34880.34
		Total Shea	r (lbs)		199.43

Wind Loa	ds - EW Di	rection			
Floor Level	Floor Height (ft)	Elevation (ft)	Story Force (lbs)	Total Story Shear (lbs)	Overturning Moment (ft-lbs)
Ground	6.25	0	6.48	138.62	0
1	13	12.5	13.47	132.14	1651.76
2	13.5	26	15.60	118.67	3085.45
3	13.5	39.5	17.07	103.07	4071.29
4	13.5	53	18.13	86.01	4558.29
5	14.25	66.5	20.08	67.87	4513.40
6	15	81.5	22.21	47.79	3894.92
PH	16.75	96.5	25.58	25.58	2468.82
		Total Over	turning Mo	oment (ft-lbs)	24243.92
		Total Shea	r (lbs)		138.62

ASCE 7-05

Seismic Loads

The seismic loads evaluated in *Technical Report I* were reevaluated as a means of confirming the loads determined in the initial investigation. As before, the loads were calculated using the Equivalent Lateral Force method outlined in ASCE7-05 Chapter 12. Since a computer model was available at the time of this analysis, the fundamental period of the structure was compared with that calculated using the code $(T_a=C_th_n^x)$ which resulted in a period of 1.75sec. However, since the period determined using ETABS, 2.04 sec., was greater than the code specified period, the code specified value was still used.

Since the New Acute Care Hospital uses special moment frames in both directions, the code specified period, T_a is independent of direction for this structure. Therefore, a single analysis holds for both directions. For a detailed set of calculation procedures, see Appendix B: Seismic Calculations.

This revised analysis resulted in a both a lower base shear (897.6lbs vs. 1521.7lbs) and overturning moment (99.9 ft-k vs. 118.6 ft-k) in respect to those calculated in *Technical Report I*. This is due mainly to the presence of errors in the original calculations.

Seismic Loa	ds							
Level	Story Weight (Ibs)	Story Height h _x (ft)	Modified h _x ^k	w _x h _x ^k	C _{vx}	Story Force (Ibs) F _x =C _{vx} V	Story Shear (Ibs) V _x =ΣF _i	Moment Contribution (ft-lbs) M _x
7	2401.39	111.5	181.19	435102.59	0.27	341.14	0.00	38037.02
6	1839.94	96.5	156.81	288525.42	0.18	226.22	341.14	21829.88
5	1850.11	81.5	132.44	245024.45	0.15	192.11	567.36	15656.94
4	1850.60	68	110.50	204491.25	0.13	160.33	759.47	10902.44
3	1865.87	54.5	88.56	165246.07	0.10	129.56	919.80	7061.02
2	1907.14	41	66.63	127062.98	0.08	99.62	1049.36	4084.54
1	1881.67	27.5	44.69	84086.98	0.05	65.93	1148.98	1813.02
Ground	1879.64	15	24.38	45816.22	0.03	35.92	1214.91	538.83
Basement	0.00	0	0.00	0.00	0.00	0.00	1250.83	0
				Overturning	Moment N	4=ΣM _x (ft-lb	s)	99923.68
Effective Seismic Weight W (lbs) 15476.36								
Base Shear V=C _s W (lbs) 897.63								

Figure 7: Seismic Loads

Computer Models

Two independent computer models were used in this analysis. A 2D model was created using SAP for the purposes of determining drift based on unit loads on individual frames, while a 3D model was created using ETABs to determine effects of loads on the complete lateral system.

While these models had several differences, they were created using a number of similar attributes. In addition to the geometric and material based constraints of the structure, there were several aspects of the special moment frames that were incorporated into both models.

There are 3 major attributes of special moment frames that were modeled using each software package. First, panel zones were explicitly modeled at beam-column connections to account for the yielding and deformations that occur at these areas due to buildup of shear forces due to moment transfer. This is required by ASCE 7 §12.7.3b. Secondly, the reduced properties of the beam sections due to the RBS's had to be taken into account. This was accomplished by modeling the beams using the RBS connection type in ETABs and 90% of the section properties in SAP. Lastly, the columns were modeled as "pinned" connections in order to achieve a conservative approximation of the column base fixity.

In addition to these requirements, the concrete shear walls at the basement level were assigned a modification of 70% of the moment of inertia as specified by ACI 318.08 §10.10.4.1 and ASCE7-05 §12.7.3a. This effectively "cracks" the section giving a reduced strength.

A detailed account of other modeling assumptions can be found in Appendix C: Computer Modeling.

2D SAP model

The main purpose of the SAP model was to determine drifts in order to determine the relative stiffness of each frame or wall element. In order to accomplish this, a 1k load was applied to each frame in three iterations; first at the top of the basement level, then at the 3rd floor level and finally at the roof level. This was necessary due to the presence or lack thereof of each frame at different floor levels. The deflections were then measured at the level which the unit load was applied.

The deflections found using SAP were then compared with a set of hand calculations performed for the basement shear walls. These shear walls were treated as a cantilever section, and the total deflection was taken as the sum of the deflection due to flexure in addition to that due to shear.

$$\Delta_{TOTAL} = \Delta_{FLEXURE} + \Delta_{SHEAR}$$

This comparison showed that the deflections found by hand calculations were 11% higher than those found using SAP. See Appendix C: Computer Modeling for the deflection comparison calculations. This was deemed to be an acceptable difference, therefore the model deflections were used for the duration of the stiffness calculations.

3D ETABs Model

The main purpose of the ETABs model was to determine the effect of applied lateral loads on the complete lateral system. Each lateral element was modeled, and then

connected as appropriate by rigid diaphragms at each floor level. Loads were then applied to the center of mass of each rigid diaphragm. Due to the simple rectangular plan of the structure as well as the uniform structural layout, the center of mass was taken to be the geometric center of each floor. The accuracy of this model was verified through the determination of the center of rigidity through hand calculations as well as a through the fundamental period of the structure.

Figure 9: 3D Lateral System Model

The center of rigidity of each floor was determined using the relative stiff of each frame element. This stiffness was taken as the ratio of the applied load to horizontal displacement it causes.

$$k_i = \frac{p}{\Delta_p}$$

Once the stiffness of each element was found, the center of rigidity was found by dividing the sum of each elements stiffness times its location by the total stiffness in that direction.

$$\overline{X} = \frac{\sum k_{iy} x_i}{\sum k_{iy}} \qquad \overline{Y} = \frac{\sum k_{ix} y_i}{\sum k_{ix}}$$

This center of rigidity was then compared to that given by ETABs, which shows that both points lie relatively close to one another (See Figure 10, Figure 11 and Figure 12).

The other method with which the accuracy of the model was determined was the fundamental period of the structure. ETAB's modal analysis determined the 1st mode fundamental period of the structure in the x, y, and z directions.

1st Mode	Period of Vibrations (secs)
x	2.04
у	1.90
z	1.29

These values can be compared to the approximate fundamental period specified by ASCE7-05 §12.8.2.1.

$$T_a = C_t h_n^x$$

This frequency, which was found to be 1.75 sec, is a conservative approximation of the structures behavior given *only* the type of system used and its height. A more sophisticated analysis should generally give a smaller, more "accurate" frequency. Since the ETABs determined frequency is about 16% higher than the code determined frequency, it can be concluded that while the ETABs model will deliver results in the ballpark of the actual structures behavior, its results will likely be overly conservative.

Figure 10: Center of Rigidity for Basement Level

Figure 11: Center of Rigidity for Ground Floor-3rd Floor

Figure 12: Center of Rigidity for Floor 4-Roof

Structure Behavior

Once the center of rigidity was found, a thorough analysis was undertaken to determine the behavior of the structure under lateral loading. This was accomplished by applying a unit load to the center of mass of each floor. The load path was determined by adding the force in each frame developed due to direct forces to the torsional forces developed due to eccentricity.

$$F_i = F_{i \, direct} + F_{i \, torsion}$$

Since these forces were determined using a unit load, they can easily be used to express the percentage of the lateral load that each frame element carries. As with stiffness, this analysis was performed in separate iterations for the basement, the ground floor through the third floor, and the fourth floor through the roof level. There are several interesting conclusions that can be drawn from this analysis. (See Appendix D: Structural Behavior for calculations).

F _i =F _{idirect} ± F _{itorsion} Basem	ent				
Moment Frame	F _{idirect}	F _{itorsion}	Fi	% Load	Check
Grid Line 1	0.001005	-0.02633	-0.02532	-2.53217	
Grid Line 2	0.000292	-0.01153	-0.01124	-1.12354	
Grid Line 6	0.000699	0.007679	0.008378	0.83779	100.25
Grid Line 7	0	0.024461	0.024461	2.446065	100.35
Basement - short high	0.499002	-0.02948	0.469522	46.95222	
Basement - short low	0.499002	0.038668	0.537671	53.76705	
Grid Line A	0.000743	0	0.000743	0.074269	
Grid Line E	0.000796	0	0.000796	0.079574	100.00
Basement - long west	0.499231	0	0.499231	49.92308	100.00
Basement - long east	0.499231	0	0.499231	49.92308	

At the basement level, the shear walls, which were also the stiffest elements by a large margin, absorbs the majority of the lateral load (nearly 50% per wall). It is interesting to note that there seems to be some shear reversal at this level in the frames along gridline 1 and gridline 2.

Fi=Fidirect ± Fitorsion Ground	d Floor - 3r	d Floor			
Moment Frame	F _{idirect}	F _{itorsion}	Fi	% Load	Check
Grid Line 1	0.303399	0.04693	0.350329	35.03289	
Grid Line 6	0.110249	-0.0171	0.09315	9.314996	100.00
Grid Line 7	0.292078	-0.06034	0.231736	23.17355	100.00
Grid Line 2	0.294274	0.03052	0.324794	32.47942	
Grid Line A	0.484076	0.063064	0.54714	54.71403	100.00
Grid Line E	0.515924	-0.06307	0.452852	45.2852	100.00

Once the basement walls terminate at the ground floor level, the forces begin to distribute themselves differently. For the levels in between the ground floor and the 3rd floor, forces are absorbed nearly equally by the pairs of perimeter moment frames (1 and 7, A and E), while the interior moment frames (6 and 2) carry a smaller percentage of the load.

Fi=Fidirect ± Fitorsion 4th Flo	oor - Roof				
Moment Frame	F _{idirect}	Fitorsion	Fi	% Load	Check
Grid Line 1	0.458388	0.018751	0.477139	47.71393	
Grid Line 6	0.145529	-0.00597	0.13956	13.95597	99.11
Grid Line 7	0.396083	-0.02164	0.374443	37.44426	
Grid Line A	0.48	0.081335	0.561335	56.13349	00.97
Grid Line E	0.52	-0.08268	0.437316	43.73162	33.87

The final iteration of this analysis was performed for the 4th floors through the roof level, where the frame along grid 2 no longer exists. Like the lower portion of the structure, the perimeter frames again take the majority of the load.

Load Combinations

According to ASCE 7-05, there are four cases that must be considered when wind loads are being analyzed. Loading conditions were developed in ETABS to analyze each of these cases. The results of these conditions were compared, and Case II proved to be controlling wind condition for the structure, as it produced the highest drift.

Figure 13: Wind Load Cases from ASCE7-05 Figure 6-9

Case 2 is described by ASCE7-05 as being "Three quarters of the design wind pressure acting on the projected area perpendicular to each principal axis of the structure in conjunction with a torsional moment..., considered separately for each principal axis. (See Figure 13 above). This condition was broken up into four individual conditions. The first condition had wind pressure in the EW direction with a positive eccentricity. The second condition was EW wind pressure with a negative eccentricity. Conditions three and four corresponded to conditions one and two but in the NS direction.

Once the controlling wind condition was determined, it was necessary to determine the controlling combination of loads. ASCE7-05 specifies that the following 7 load combinations that must be considered in the strength design of structures.

1.
$$1.4(D + F)$$

2. $1.2(D + F + T) + 1.6(L + H) + 0.5(L_r \text{ or } S \text{ or } R)$
3. $1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.8W)$
4. $1.2D + 1.6W + L + 0.5(L_r \text{ or } S \text{ or } R)$
5. $1.2D + 1.0E + L + 0.2S$
6. $0.9D + 1.6W + 1.6H$
7. $0.9D + 1.0E + 1.6H$

Figure 14: ASCE 7-05 Load Combinations

For the analysis of the lateral system, the key load combinations are 4 and 5 for general loading, and 6 and 7 for uplift. It can be seen determination of the governing load case can be simplified to whether 1.6W+L is greater than 1.0E for the general loading conditions, and whether 1.6W is greater than 1.0E for uplift. Since seismic loads are greater than the wind loads by a large margin, cases 5 and 7 can be said to control strength design for general loading and uplift respectively. In addition, it is evident that the general loading combination for seismic will control strength design.

ETABs was used to confirm this assertion by comparing the story shears at the seventh floor for each load combination.

Story	•	Load 🛛 💽	Loc	ΨŢ	P		VX 💽		VY 🔽	Т		МХ	-	MY	-
STORY7		COMB401	Bottom	۱		163.05	-45.4	1	-62.08		-201736	13030	7.6	-9324	9.3
STORY7		COMB402	Bottom	1		163.05	-45.4	1	-62.08	2	15429.6	13030	7.6	-9324	9.3
STORY7		COMB501	Bottom	n I		163.05	-341.1	4	-341.14	1	.07629.7	18053	8.4	-1464	481
STORY7		COMB601	Bottom	1		122.28	-45.4	1	-62.08		-201736	10052	4.3	-7198	0.3
STORY7		COMB701	Bottom	1		122.28	-341.1	4	-341.14	1	07629.7	15075	5.1	-1252	212

Drift

The ETABs model was used to determine the maximum drifts for both wind and seismic forces. These forces were then compared with industry accepted values as well as the maximum allowable drift to prevent collision with the existing hospital.

Since deflections due to wind loads are a serviceability issue, they were analyzed using unfactored service loads. Only the four Case 2 conditions previously described were investigated since they were already shown to control. These values were then compared with the industry standards of H/400 and the more conservative H/600. In addition, these drifts were also checked against the constraints of the seismic joint as

specified in the structural drawings. As Figure 15 below shows, the structure met all necessary criteria.

Maximur	n Drift - EW W	/ind - positive e	eccentricity (in)		
	height (h _x)	Δ_{actual} (ETABS)	$\Delta_{\text{allowable}} = L/400$	$\Delta_{\text{allowable}} = H/600$	Δ _{max} (Pounding)
Roof	1338	1.2288	3.345	2.23	-
Story 6	1158	1.1279	2.895	1.93	19.2
Story 5	978	0.9665	2.445	1.63	15.96
Story 4	798	0.7669	1.995	1.33	12.72
Story 3	636	0.5808	1.59	1.06	9.48
Story 2	474	0.3878	1.185	0.79	6.24
Story 1	312	0.174	0.78	0.52	3
Ground	150	0.0068	0.375	0.25	0

Maximur	n Drift - EW W	/ind - negative	eccentricity (in)		
	height (h _x)	Δ_{actual} (ETABS)	$\Delta_{\text{allowable}} = 0.01 h_{x}$	$\Delta_{\text{allowable}} = H/600$	Δ _{max} (Pounding)
Roof	1338	2.4731	13.38	2.23	-
Story 6	1158	2.242	11.58	1.93	19.2
Story 5	978	1.8814	9.78	1.63	15.96
Story 4	798	1.4456	7.98	1.33	12.72
Story 3	636	1.0718	6.36	1.06	9.48
Story 2	474	0.7404	4.74	0.79	6.24
Story 1	312	0.3411	3.12	0.52	3
Ground	150	0.0149	1.5	0.25	0

Maximur	n Drift - NS W	ind - positive e	ccentricity (in)		
	height (h _x)	Δ_{actual} (ETABS)	$\Delta_{\text{allowable}} = 0.01 h_{x}$	$\Delta_{\text{allowable}} = H/600$	Δ_{max} (Pounding)
Roof	1338	1.5948	13.38	2.23	
Story 6	1158	1.4607	11.58	1.93	
Story 5	978	1.2476	9.78	1.63	
Story 4	798	0.9868	7.98	1.33	
Story 3	636	0.7445	6.36	1.06	
Story 2	474	0.4952	4.74	0.79	
Story 1	312	0.2234	3.12	0.52	
Ground	150	0.0115	1.5	0.25	

Maximur	n Drift - NS W	ind - negative	eccentricity (in)		
	height (h _x)	Δ_{actual} (ETABS)	$\Delta_{\text{allowable}} = 0.01 h_{x}$	$\Delta_{\text{allowable}} = H/600$	Δ_{max} (Pounding)
Roof	1338	1.9394	13.38	2.23	
Story 6	1158	1.7674	11.58	1.93	
Story 5	978	1.5021	9.78	1.63	
Story 4	798	1.1842	7.98	1.33	
Story 3	636	0.8891	6.36	1.06	
Story 2	474	0.5846	4.74	0.79	
Story 1	312	0.2613	3.12	0.52	
Ground	150	0.0119	1.5	0.25	

Figure 15: Drift Values for Wind Loads

While wind loads were primarily a serviceability issue, seismic loads are classified as a strength issue. Therefore, factored loads were used in this drift check (1.0). In addition, the drifts were compared to a maximum drift of $0.01h_x$, which is specified in ASCE7-05 Table 12.12-1. Like the wind drifts, the seismic drifts met all necessary deflection criteria (See Figure 16).

Maximur	n Drift - EW Se	eismic (in)		
	height (h _x)	Δ _{actual} (ETABS)	$\Delta_{\text{allowable}} = 0.01 h_{x}$	Δ _{max} (Pounding)
Roof	1338	6.8097	13.38	-
Story 6	1158	6.0003	11.58	19.2
Story 5	978	4.9122	9.78	15.96
Story 4	798	3.6956	7.98	12.72
Story 3	636	2.6469	6.36	9.48
Story 2	474	1.6586	4.74	6.24
Story 1	312	0.7203	3.12	3
Ground	150	0.0436	1.5	0

Maximur	n Drift - NS Se	ismic (in)		
	height (h _x)	Δ _{actual} (ETABS)	$\Delta_{\text{allowable}} = 0.01 h_{x}$	Δ_{max} (Pounding)
Roof	1338	5.7867	13.38	
Story 6	1158	5.168	11.58	
Story 5	978	4.2836	9.78	
Story 4	798	3.2913	7.98	
Story 3	636	2.4161	6.36	
Story 2	474	1.5444	4.74	
Story 1	312	0.6851	3.12	
Ground	150	0.0412	1.5	

Figure 16: Drifts values for Seismic Loads

Spot Checks

Several spot checks were completed in order to check the validity of member sizes as well as the implications of this analysis. The first two spot checks were on a typical girder and a typical column on moment frame 7. In order to determine the loads on these members, a portal analysis was undertaken using the fraction of the seismic loads taken by that moment frame. Only seismic loads were considered in the portal analysis since those loads were found to be the controlling lateral force for strength. Once the moments present in the members were determined, it was confirmed that the members would be able to carry them as well as any gravity loads that might be present on the members. Both the column and girder were found to be more than adequate to carry the required loads.

The next spot check performed was the effect of the lateral loads on the foundation system through overturning. For this analysis, moment frame 6 was selected since it has the shortest length, and will therefore prove to be critical for overturning forces. The uplift forces were determined in the frame, and it was found that the dead loads in the structure would not be sufficient to counteract it. This indicates that overturning will be an issue for this structure, which is a potential subject to look into in the upcoming proposal. See Appendix F for a complete set of calculations for these spot checks.

Conclusions

The three major conclusions that can be drawn from this analysis regard to controlling lateral loads, torsional effects, and modeling procedures. It was shown that seismic loads are critical for both strength and deflection. In addition, load combinations containing seismic will control the design of the lateral elements. Torsional effects were examined and it was found that torsional effects generally only made a small contribution (usually less than 5%) to the overall force in each frame element. Lastly, modeling practices were investigated using the ETABs and SAP software packages. The results of these models were compared to hand calculations and were shown to produce an adequate, although overly conservative level of accuracy.

APPENDIX

Appendix A: Wind Calculations

Y)SE		ME	14	00	2		SINC	E	B	14	DIN	9	К	NO	t	A	lou	1-R	ISE		AWI	>			
-		n	EES	5	8	EQ	0	Ŧ	6	5:1	4	6	.5	2		-						-	-			
-	P.	-	1			000	-	-	-	-	-	+			-				-	-		-				
D	DP	1510	- 4	Jia	510 0	SVE	20	-	->	08.	wy	IA	BUE		6	1,	V	= }	55	MP	H	1	-	-		
0	W	113	61	De	eec.	ELON	MAL	sty	FAR	to	R =	5	K	=	0.9	85	Ŧ	D	Usi	inseq	Tra (BU	EL	O-L	1s	
	_					-)		-										-					1	
0	0	cer	395	in	cy	(A)	TAL	OR	4=	III	-	(HE	AL	MT	C	TRE	F	Ac	in	M)	TR	x	16	04	
	5	> 1	m. Pr	R	TAK	ICE	F	ne	101	2	I=	- 1.1	5	(AS	CE	Т	ABL	E	6	1)		-		-	
8	1)	SE	E.	1 Ord	2 11			2	1	1		i Gr				0.	-10					1.00	-		-	
				T	501	e		1	1	Const		nei		()	-	FLA	122	2			1				-	
0	1	Te	Pol	AR.	994	AC.	FF	en	DR																	
				1	1	NOB	Hi	j	EL	EV.	11	315	1 4	-	Ass	OW	E	Bo	TTO	m	OF	H	u	15	SEV	+L
_			-	1	Bur	LOW	TE	LEN.	_		- 1	101					0							_	.,	
-	_		-	-	-	-	1	-	-	-				_	-	100	15	11	0.	34'	10	0 1	JOT	TC	P=	DF
-	-	-	-	-	-	+	-	-	-	-	-		-			-		ø		0-	1	-	1	0		
+	-	-		-		+	+	-	1	+			-					0 e	0	DE	No Co	24	11	h		
	> \.		05	-			-	T.n.		- 1	2	2		τ	÷ .		1.	,				t	R			
	- 10	EIR		-		< :		SEC.	04	Ev	E	1	50	DOF	110	D Eu	K,	C T	¢ 1	2			a	110	nw	9
			4					000					- Jr	Mint	140			-								
6		YEL	-	ere	1 1	Pee	350	RE	5																	
	-		_	B	2 =	0.	00	250	o k	zk	ZT	ko	Y2	1		2		EE	r.	Ex	CE	-	For	e (TRI	HAN
-	_	_	0	bh	1	0.0	02	56	kn	K	er l	KJ'	V2	I		-										
-	-	_	-	-	+	-	-			-	-	-			-				-		-			-		-
137	E	FF	ECT		TA	072	IRS	-						-	-						and a		1.00			
		n	=	79	-		70		= 0	. 6	57	1			R		10		ASC	E7-	05	1				
				H	T	F	115				02			JER		00	50		-u	21	-	1	-			
																				-						
		n,	11	H	1	= !	115	1	0,	86	9 (AN	F	OR	ni		ASI	CE.	-18	S) -	*	Use	EF	DR	
		_																					CA	ue	5	
-		_			M	Er	THE	R	LA	RE	r	1.4	-1	H	2	000		STR	UC	NOR	E	15	F	TE	KIB	E.
_		_			_	-	-															-			-	

Subject WIND ANAUSIS Project Sheet No. 3 or 3

Velocity Pressure Coefficents K_z and Velocity Pressure q_z					
Floor Level	Height	Kz	qz		
Ground	0	0.850	15.368		
1	12.5	0.850	15.368		
2	26	0.948	17.140		
3	39.5	1.037	18.749		
4	53	1.102	19.924		
5	66.5	1.156	20.900		
6	81.5	1.215	21.958		
Roof	96.5	1.253	22.654		
Parapet	101.5	1.264	22.848		
Penthouse	115	1.298	23.459		

Wind Load Design Criteria				
Design Wind Speed	85 mph			
Directionality Factor K _d	0.85			
Importance Factor (I _w)	1.15			
Exposure	С			
Topographic Factor (k _{zt})	1			
Mean Roof Height (h)	105.75 ft			
K _h	1.27			
q _h	23.04			

Term	NS Wind	EW	EW Wind	
n ₁	0	.86		
gq	3	.40		
gv	3	.40		
g _R	4	.15		
Z _{MEAN}	63	.45		
с	(0.2		
IZMEAN	0.	0.179		
LZMEAN	569	569.841		
Q	0.85	58	0.844	
V _{zmean}	89	89.607		
N1	5.	5.469		
R _n	0.	0.048		
η_h	4.	4.669		
R _h	0.	191		
η_B	4.21	12	5.953	
R _B	0.20)9	0.154	
η _L	19.92	28 :	14.099	
RL	0.04	0.049 0.068		
β	0.	0.010		
R	0.32	26	0.28	
Gf	0.89	99	0.88	

nternal Pressure Coefficent GC _{pi}			
For Enclosed Buildings 0.18			
	-0.18		

External Pressure Coefficents					
Wind Direction	NS EW				
L/B	1.413	0.708			
C _p (walls) windward	0.800				
C _p (walls) leeward	-0.417	-0.500			
C _p (walls) sidewall	-0.700				
h/L	0.784	1.109			
C _p (roof)					
0-h/2	-1.120	-1.300			
h/2-h	-0.790	-0.700			
h-2h	-0.612 -				
>2h	-	-			
Reduction Factor	0.800	0.800			

Wind Loads - NS Direction							
Floor	Height Above	Story Height	Wind Pressure	Internal Pressure (psf)		Net Pressure (psf)	
	Ground (rt)	(ft)	(psf)	(+)(Gc _{pi})	(-)(Gc _{pi})	(+)(Gc _{pi})	(-)(Gc _{pi})
Ground	0	12.5	6.91	4.15	-4.15	2.76	11.06
1	12.5	13.5	6.91	4.15	-4.15	2.76	11.06
2	26	13.5	8.18	4.15	-4.15	4.04	12.33
3	39.5	13.5	9.34	4.15	-4.15	5.19	13.49
4	53	13.5	10.19	4.15	-4.15	6.04	14.33
5	66.5	15	10.89	4.15	-4.15	6.74	15.04
6	81.5	15	11.65	4.15	-4.15	7.50	15.80
PH	96.5	18.5	12.15	4.15	-4.15	8.00	16.30
Parapet	101.5	5	12.29	4.15	-4.15	8.14	16.44
PH Roof	115	-	12.73	4.15	-4.15	8.58	16.88
Leeward	All	-	-12.79	4.15	-4.15	-16.94	-8.65
Side	All	-	-18.65	4.15	-4.15	-22.80	-14.50
	0 to 52.875'	-	-22.71	4.15	-4.15	-26.86	-18.57
Roof	52.875' to 105.75'	-	-17.24	4.15	-4.15	-21.39	-13.10
	105.75' to 134.83'	-	-14.29	4.15	-4.15	-18.44	-10.14

Wind Loa	ds - EW Direction						
Floor	Height Above	Story Height	Wind Pressure	Internal Pressure (psf)		Net Pressure (psf)	
	Ground (11)	(ft)	(psf)	(+)(Gc _{pi})	(-)(Gc _{pi})	(+)(Gc _{pi})	(-)(Gc _{pi})
Ground	0	12.5	6.71	4.15	-4.15	2.57	10.86
1	12.5	13.5	6.71	4.15	-4.15	2.57	10.86
2	26	13.5	7.97	4.15	-4.15	3.82	12.11
3	39.5	13.5	9.10	4.15	-4.15	4.96	13.25
4	53	13.5	9.93	4.15	-4.15	5.79	14.08
5	66.5	15	10.62	4.15	-4.15	6.48	14.77
6	81.5	15	11.37	4.15	-4.15	7.22	15.52
PH	96.5	18.5	11.86	4.15	-4.15	7.72	16.01
Parapet	101.5	5	12.00	4.15	-4.15	7.85	16.15
PH Roof	115	-	12.43	4.15	-4.15	8.29	16.58
Leeward	All	-	-14.32	4.15	-4.15	-18.47	-10.18
Side	All	-	-4.15	4.15	-4.15	-8.29	0.00
	0 to 52.875'	-	-25.696353	4.15	4.15	-29.84	-21.55
Roof	52.875' to 95.395'	-	-15.750632	4.15	-4.15	-19.90	-11.60
		-	-	4.15	-4.15	-	-

Appendix B: Seismic Calculations

REVISED SEISMIC 1 OF 3 LOAD DETERMINATION EQUINALENT LATERAL FORCE PROCEDURE PENTHOUSE FLOOR SF = 22655F S= 1.5 7 0.15 S= 0.02 7 0.04 WHICH IS 18% OF A TYPICAL FLOOR. FLOORS < 20% TYPICAL FLOOR SFS CAN BE CONSIDERED A NON SUBSTANTIAL FLOOR & DISREGATED "DETERM INED USINT USGS WEBSITE " h = 111.5'= (FROM BASEMENT) to ROOF "A MAT FOUNDATION is USED FOR SEISMIC DAMPING " SITE CLASSIFIED AS SITE CLASS C ALCORDING TO GEOTEC REPORT. USING THBLE 11.4-1 USING THBLE 11.4-2 Fa=1.0 FOR So > 1.25 StreGLAMS (FOF = 1.3 FOR SI 20.5 W) Sate CLAMS C 00 SM5 = FaS5 = 115 00 Sm1 = FrS1 = 0.806 SDS = 25ms / 3 = 1 SEISMIC DESIGN CATAGORY IS IN BABED ON IBC THELE 1604.5 (HOSPITAL/HEACHT CARE FACILITY) CONDITIONS FOR USE OF SIMPLIFIED DESIGN PROCEDURE) Ta in Each Direction < 0.8 TS $T_a = C_{th} n_{n}^{x} (12.8-7)$ $T_s = \frac{S_{01}}{S_{05}} = \frac{0.537}{1} = 0.537$ = (0.028)(111.5') .8 Ta > DISTS : SIMPLIFIED = 1,22 SECS DESIGN PEOCEDURE MAY DOT BE USED OR Ta=0.1N (12.8-8) =0.1(7)= 0.75ECS SINCE ALL STEEL MOMENT FRANKS Ta is THE SAME IN EACH DIRECTION THE SDC is determined as the more severe of SPC's given in Tarles 11.6-1 \$ 11.6-2 11.10-1 => Sps = 1 30 SDC D USE SEISMIC DESIGN LATARDELY 11.6-2 => Sp1 = 0.537 = SDC D D

Revised Service Long
 3 or 3

 The Uncert Service Delle induced at May level since

$$E = Dereconned By F_x = C_{y,x} V$$
 where

 $C_{yx} = \frac{U_x T_{y,x}^{-1}}{Z_{UV} T_{y,x}^{-1}}$
 $h_{1,y} = height of storeg

 $from base

 $k = 1$ ($175 - 15$)

 $(Z-5-5)$
 $(Z-$$$

Appendix C: Computer Modeling

Relative Stiffnesses of Lateral Elements - Basement				
Momont Framo	Drift per 1k load	k=P/∆p		
Moment Plane	(∆p) (in)	(k/in.)		
Grid Line 1	0.0032	312.50		
Grid Line 2	0.0049	204.08		
Grid Line 6	0.0110	90.91		
Grid Line 7	0.0046	217.39		
Grid Line A	0.0030	333.33		
Grid Line E	0.0028	357.14		
Basement - long	0.0000	224064.53		
Basement - short	0.0000	155231.29		

Center of Rigidity - Basement				
X Direction	k _{iy}	x _i	k _{iy} x _i	
N 45 A	222.22	100	100000.007	
	257.14	1112	207500	
	224064 52	1115	337300	
VVA	224004.35	0	0	
W _B	155231.29	1141.25	177157715	
SUM	379986.30		177595882	
$x = \Sigma k_{iy} x_i / \Sigma k_{iy}$				467.3744
Y Direction	k _{iy}	x _i	k _{iy} x _i	
MF 1	312.50	1550.75	484609.38	
MF 2	204.08	1336	272653.06	
MF6	90.91	244.5	22227.273	
MF7	217.39	27	5869.5652	
W ₁	0.00	1583.5	0	
W ₂	0.00	0	0	
SUM	824.88		785359.27	
$y = \Sigma k_{iv} x_i / \Sigma k_{iv}$				952.0868

Relative Stiffnesses of Lateral Elements -Ground - 1st				
Moment Frame	Drift per 1 ^k load (Δ_p)	k=P/Δ _p		
Woment Frame	(in)	(k/in.)		
Grid Line 1	0.0129	77.52		
Grid Line 2	0.0133	75.19		
Grid Line 6	0.0355	28.17		
Grid Line 7	0.0134	74.63		
Grid Line A	0.0081	123.46		
Grid Line E	0.0076	131.58		
Basement - long				
Basement - short				

Center of Rigidity - Floors Ground -3				
X Direction	k _{iy}	x _i	k _{iy} x _i	
MFA	123.46	122	15061.73	
MF E	131.58	1113	146447.4	
SUM	255.04		161509.1	
$x = \Sigma k_{ix} x_i / \Sigma k_{ix}$				633.2802548
Y Direction	k _{iy}	x _i	k _{iy} x _i	
MF1	77.52	1550.75	120213.2	
MF 2	75.19	1336	100451.1	
MF6	28.17	244.5	6887.324	
MF7	74.63	27	2014.925	
SUM	255.50		229566.6	
$y = \Sigma k_{iy} x_i / \Sigma k_{iy}$				898.4878816

Relative Stiffnesses of Lateral Elements - Floors 4-7				
	Drift per 1k load	k=P/∆p		
Woment Frame	(∆p) (in)	(k/in.)		
Grid Line 1	0.0267	37.45		
Grid Line 6	0.0841	11.89		
Grid Line 7	0.0309	32.36		
Grid Line A	0.0182	54.95		
Grid Line E	0.0168	59.52		

Center of Rigidity - Floors 4 - Roof					
X Direction	k _{iy}	x _i	k _{iy} x _i		
MFA	54.95	122	6703.297		
MFE	59.52	1113	66250		
SUM	114.47		72953.3		
$x = \Sigma k_{ix} x_i / \Sigma k_{ix}$				637.32	
Y Direction	k _{iy}	x _i	k _{iy} x _i		
MF 1	37.45	1550.75	58080.52		
MF6	11.89	244.5	2907.253		
MF7	32.36	27	873.7864		
SUM	81.71		61861.56		
$y = \Sigma k_{iy} x_i / \Sigma k_{iy}$				757.1216	

3D MOREL LOF 7
 LATERAL SYSTEM MODELING
• Marreeliar Properties (Members Modeled W) O Mass to control Mass • Concrete $f_{c}^{i} = 44\pi i$ $E = 3,400,000 \text{ ps}$; $V = 0,2$ Location) • Steel $F_{y} = 50^{\pm ri}$ $E = 29,000,000 \text{ ps}$; $V = 0.3$
"FRAME SECTIONS TAKEN FROM ETABS DATABASE & AISCIS PROFERTIES.
 BACEMENT WALL SECTIONS "MEMBRANE" ELEMENT > CONCRETE MATERIAL > MEMBRANE 18" BONDING 18" BONDING 18" WALL IS "CERLED" TO 0.75G WALL IS "CERLED" TO 0.75G ALI BISION SOMPLIFIED TO A RECTANGULAR SHAPE OF DIMENSIONS 82'-7" × 131'-11.5"
* FLOORS MODELED BASEMENT (-15'-O") ROOF (96'-6") PENTHOUSE OF = 22/255F => 18% SF FOR TYPICAL FLOOR ** CAN BE IGNORED TOTPI HEIGHT (111'-6")
· COLUMIN SPLICES LOCATED 5' ABOYE FLOORS 1, 3, \$5
· INSERTION POINTS WERE DEREGARDED AT THIS STAGE OF ANALYSIS
· JOINT RESTRAINTS C BASE MODELED as <u>PINNED</u> . THIS IS A WNSERVATINE APPROXIMATION OF CANNU/BASE FIXING. SEE NEHRP pg 18.
· BASEMENT WALLS MESHED W/ MAX SIZE = 24" & RESTRAINTS WERE MODELED ON EDGES.
"FLOOR DIAPHRACIMS
 GROUND FLOOR DIMPARAM. 6.25" CONCRETE MEMBRANE, MESHED @ 48" HELPS TO ALLOUNT FOR SHEAR REVERSAL EFFECT. OTHER FLOORS BIGID DIAPARAGM.
· EXPLICIT PAWER ZOWE MODELING USED @ ALL BEAM-COLUMN CONNECTIONS TO ACCOUNT FOR "SOFTENING" OF THESE AREAS DUE TO LOCATIZED STRESSES (REQ'D BY ASLE 7, \$12,7.36) · MODELED USING ELASTIC PROPERTIES FROM COLUMN.
"BEAMS WERE MODELED AS REDUCED BEAM SETTION USing PROGRAM DEFAULTS FOR WOUTS.

3D MODEL Z OF Z · ADDITIONAL MASS PER FLOOR $\frac{1879.104}{123255F} = 0.1525^{KSF} \left(\frac{1}{32.2^{54}}\right) \left(\frac{1}{(12^{-1})^3}\right) = 2.74 \times 10^{-16}$ · ADDITIONAL MASS ADDED TO DIAPHEAGAS.

MOMENT FRAME ELENATION 1 POETIONS OF THE BOAM FLANGE ARE SECECTIVELY TRIMMED IN REGION ADJACENT TO COLUMN BEAM CONNECTION TO ELECTOR · RBS MOMENT CONNECTIONS USED. TO ENSURE VIELDING & HINGE FORMATION -/In REPUCED "NO MOMENT CONNECTIONS C 1St FLOOR LEVEL. · DETERMINATION OF Ap USING ZD NOTELINY · TOTNORE BASEMENT · USE EXPLICIT PANEL ZOWE MODELING TO ALLOUNT FOR PANEL ZONE DEFORMATIONS (REQ. BY ASCE 7 3/2.7.36)) " USE CONSTREMENTS TYPE "EQUAL" AT EART LEVEL FOR X TRANS MAT STRENGTHS SOTEEL LONGRETE · BASEMENT WALLS EXIST C BASEMENT LEVEL OWLY - PORTIONS OF CONCRETE WHILS ON JA GROUND FLOOR 14 NORED AS "THICK SHELL" W/ MEMBERNE t= 18" BENDING t= 1.8" -"Jogs" IN WALL WERE SIMPLIFIED TO CREATE A RECTANGLE. "ABSUME LEWTER OF MASS LOLATED C GEOMETRIC GENTER OF STRUCTURE

Appendix D: Structural Behavior

Direct Force - Basement						
Moment Frame	k=P/Δ _p (k/in.)	Σki (Basement)	$F_{iy}=(k_{iy}/\Sigma k_{jy})P_y$			
Grid Line 1	312.50		0.001004554			
Grid Line 6	90.91		0.000292234			
Grid Line 7	217.39	311083	0.00069882			
Grid Line 2	0.00		0			
Basement - short (2)	155231.29		0.499002196			
Grid Line A	333.33		0.000742689			
Grid Line E	357.14	448820	0.000795738			
Basement - long (2)	224064.53		0.499230786			

Force due to eccentricity - Basement						
Moment Frame	k=Ρ/Δ _p (k/in.)	di	k _i di ² (Basement)	e _i	Σk _i di ² (Basement)	$F_{it} = (k_i d_i P_y e_x) / \Sigma k_j d_j^2$
Grid Line 1	312.50	652.50	133048828.13			0.026326245
Grid Line 2	204.08	437.50	39062500.00			0.011527639
Grid Line 6	90.91	654.25	38913005.68	104	901644776	0.007679084
Grid Line 7	217.39	871.50	165111358.70	104	801044770	0.024460647
Basement - short high	333.33	685.00	156408333.33			0.029480015
Basement - short low	333.33	898.5	269100750.00			0.038668312
Grid Line A	333.33	511.25	87125520.83		102477546981	0
Grid Line E	357.14	479.75	82200022.3	0		0
Basement - long west	155231.29	633.25	62248612620.3			0
Basement - long east	155231.29	508.00	40059608817.1			0

Direct Force Floors 1-3						
Moment Frame	k=P/Δ _p (k/in.)	Σki (Floors 1-3))	F_{iy} =($k_{iy}/\Sigma k_{jy}$) P_y			
Grid Line 1	77.5	2	0.303398826			
Grid Line 6	28.1	7 255 50	0.110249151			
Grid Line 7	74.6	3 255.50	0.292077974			
Grid Line 2	75.1	9	0.294274049			
Grid Line A	123.4	6 255.04	0.484076433			
Grid Line E	131.5	255.04	0.515923567			

Force due to eccentricity - Floors 1-3						
Moment Frame	k=P/Δ _p	d	k _i d _i ²	0	Σk _i d _i ²	$F_{it}=(k_id_iP_ye_x)/\Sigma k_jd_j^2$
Moment Hame	(k/in.)	ui	(Floors 1-3))	ei -	(Floors 1-3))	
Grid Line 1	77.52	652.50	33004360.47			0.046930051
Grid Line 6	28.17	654.25	12057551.06	107.75	116100077.5	0.017099192
Grid Line 7	74.63	871.50	56680018.66	107.75	110133377.5	0.060342433
Grid Line 2	75.19	437.50	14391447.37			0.030520148
Grid Line A	123.46	511.25	32268711.42	62.50	62552930.2	0.063063876
Grid Line E	131.58	479.75	30284218.75	02.30		0.063071586

Direct Force Floors 4-Roof							
Moment Frame	k=Ρ/Δ _p	(k/in.)	Σki (4-Roof)	$F_{iy}=(k_{iy}/\Sigma k_{jy})P_y$			
Grid Line 1		37.45		0.458388235			
Grid Line 6		11.89	81.71	0.145528726			
Grid Line 7		32.36		0.396083038			
Grid Line A		54.95	114.47	0.48			
Grid Line E		59.52	114.47	0.52			

Force due to eccentricity - Floors 4-Roof						
Moment Frame	k=P/Δ _p (k/in.)	di	k _i di ² (Floors 4-7))	ei	Σk _i d ² (Floors 4-7))	$F_{it} = (k_i d_i P_y e_x) / \Sigma k_j d_j^2$
Grid Line 1	37.45	652.50	15945926.97		45615303.0	0.018751099
Grid Line 6	11.89	654.25	5089691.59	35.00		0.00596905
Grid Line 7	32.36	871.50	24579684.47			0.021640455
Grid Line A	54.95	511.25	14361349.59	01.05	28061353.3	0.081334854
Grid Line E	59.52	479.75	13700003.72	61.25		0.082683806

Teri II
SHERE WALL DEFLECTION CHECK.

$$I' \rightarrow I' \rightarrow I' = \frac{1}{12}$$

 $I' \rightarrow I' = \frac{1}{12}$
 $I' = \frac{1}{12} \cdot \frac{(y^{n})(s_{22} s^{n})^{2}}{(12}$
 $I = \frac{1}{12} \cdot \frac{(y^{n})(s_{22} s^{n})^{2}}{(12} \cdot \frac{1}{12} \cdot \frac{1}{12}$

SAMPLE CAUSE FOR STRUCTURENT BENHAVIOR.
FLORES H-COOF => NS DIRECTION.
DEECT FORCE
$$Ek_x = 114, 47 k^{this}$$
 $Ek_y = 448, 820 k^{this}$
 $F_{ee} = \frac{h_{ea}}{2k_{e}} P$ $F_{eO} = \frac{59.52}{114, 47} (1^{k})$
 $= \frac{54.5}{114, 47} (1^{k})$ $= 0.52^{k}$ or 522 OF THE
DEECT FORCE
 $= 0.48^{6}$ or 4835 or THE
DEECT FORCE
 $= 0.48^{6}$ or 4835 or THE
DEECT FORCE
 $= 0.48^{6}$ or 4835 or THE
DEECT FORCE
 $F_{er} = \frac{k_{ed}}{2k_{5}} \frac{R_{e}}{2}$ $F_{er} = \frac{59.52(414, 35)(1^{k})(81.25)}{280(4553.3)}$
 $= (54.35)(1^{k})(1^{k})(81.25)$ $= 0.0824^{k}$ (-)
 $= 0.0815^{k}$ (+)
TOTAL FORCE
 $F_{e} = F_{eo} + F_{er}$ $F_{e} = F_{eo} + F_{er}$
 $= 0.48^{k} + 0.0813^{k}$ $= 0.522 - 0.827$
 $= 0.5813^{k}$ $= 0.43^{k}$
 $= 0.5813^{k}$ $= 0.43^{k}$ $= 0.43^{k}$

Appendix E: Load Combinations

Appendix F: Spot Checks

Forces on Frame 7						
S	eismic Loa	Factor	F (K)			
7	341.14	0.37	127.74			
6	226.22	0.37	84.71			
5	192.11	0.37	71.93			
4	160.33	0.37	60.03			
3	129.56	0.23	30.02			
2	99.62	0.23	23.09			
1	65.93	0.23	15.28			
Ground	35.92	0.23	8.32			
Basement	0.00	0.02	0.00			

Forces on Frame 6							
	Seismic Load	Factor	F (k)				
7	341.14	0.14	47.61				
6	226.22	0.14	31.57				
5	192.11	0.14	26.81				
4	160.33	0.14	22.38				
3	129.56	0.09	12.07				
2	99.62	0.09	9.28				
1	65.93	0.09	6.14				
Ground	35.92	0.09	3.35				
Basement	0.00	0.01	0.00				

Appendix G: Plans

Figure 17: NS Buiding Section

Figure 18: EW Building Section

Figure 19: Typical Framing Plan

Figure 20: Typical Moment Frame Elevation